
Linking Post-Translational Modifications and
Variation of Phenotypic Traits*□S

Warren Albertin‡§¶��, Philippe Marullo§¶�, Marina Bely§¶, Michel Aigle**,
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Enzymes can be post-translationally modified, leading to
isoforms with different properties. The phenotypic conse-
quences of the quantitative variability of isoforms have
never been studied. We used quantitative proteomics to
dissect the relationships between the abundances of the
enzymes and isoforms of alcoholic fermentation, meta-
bolic traits, and growth-related traits in Saccharomyces
cerevisiae. Although the enzymatic pool allocated to the
fermentation proteome was constant over the culture me-
dia and the strains considered, there was variation in
abundance of individual enzymes and sometimes much
more of their isoforms, which suggests the existence of
selective constraints on total protein abundance and
trade-offs between isoforms. Variations in abundance of
some isoforms were significantly associated to metabolic
traits and growth-related traits. In particular, cell size and
maximum population size were highly correlated to the
degree of N-terminal acetylation of the alcohol dehydro-
genase. The fermentation proteome was found to be
shaped by human selection, through the differential tar-
geting of a few isoforms for each food-processing origin
of strains. These results highlight the importance of post-
translational modifications in the diversity of metabolic
and life-history traits. Molecular & Cellular Proteomics
12: 10.1074/mcp.M112.024349, 720–735, 2013.

The key problem in understanding genotype-phenotype re-
lationships is the complexity arising from multiple levels of
cellular functioning. Among them, metabolic networks involve

series of interconnected chemical reactions catalyzed by en-
zymes, allowing the transformation of input substrates into
intermediate or final metabolites. These networks play an
essential role in an organism’s growth, reproduction, and
ability to maintain cell integrity and to respond to environmen-
tal changes (1, 2). The metabolic fluxes, as well as the me-
tabolite concentrations, are governed by the activity of the
enzymes, which depends on three types of factors: kinetic
parameters, enzyme abundance, and activation state of the
enzyme. The kinetic parameters are determined by the se-
quence and the three-dimensional structure of the protein (3).
The abundance of the enzymes is the result of numerous
molecular processes taking place from the transcriptional to
the translational level, including epigenetic modifications of
the DNA and chromatin (4), transcriptional regulation by tran-
scription factors (5), mRNA capping and splicing and small
RNA regulation (6), protein turnover (7), etc. The enzyme ac-
tivation state is primarily because of post-translational modi-
fications of the native protein, themselves highly regulated (8,
9). Other mechanisms involved in enzyme activity are protein-
protein interactions and allosteric regulation, such mecha-
nisms being sometimes mediated through post-translational
modifications (10, 11). The resulting isoforms can display
differences in activity, affinity for partners (protein or effec-
tors), and stability (12). The most studied modification is the
reversible activation and inactivation of enzymes by phosphor-
ylation (11, 13, 14), but other modifications are documented,
such as acetylation that alters enzymatic activity and stability
(15, 16) or fatty-acid modifications affecting cellular localiza-
tion (17).

Thus, there are multiple levels to modulate metabolic phe-
notypes, and the identification of the most effective ones has
been the subject of much interest (18–26). Recent data sug-
gest that upstream levels of regulation have moderate control
over metabolic changes. For example, genes involved in re-
dox regulation in Arabidopsis thaliana have quite stable ex-
pression whereas the corresponding fluxes and metabolite
contents display marked genetic variations (27). Similarly,
various studies on bacteria have shown that transcription is
not sufficient to explain the variation of metabolic fluxes or
phenotypes in Escherichia coli (28), Bacillus subtilis (29), Co-
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rynebacterium glutamicum (30), Synechocystis sp (31), or My-
coplasma pneumonia (19). Systems biology studies, including
transcriptomic and proteomic approaches, have suggested
that the transcriptome alone does not provide a reliable indi-
cation of flux distribution in metabolic networks in yeast (32–
34). By contrast, manipulating post-translational processes
may have marked consequences on metabolic flux. For ex-
ample in plants, abolition of the post-translational regulation
of just one enzyme (a nitrate reductase) is sufficient to in-
crease the corresponding flux of nitric oxide (35). In Bacillus
subtilis, the phosphorylation state of one protein (Crh, a phos-
phocarrier protein) controls the flux through the methylglyoxal
pathway, which is an alternative route of glycolysis in bacteria
(36). In Salmonella enterica, lysine acetylation was shown to
coordinate central metabolic pathways such as carbon use
(37) or glycolysis and the TCA cycle in human (15). Thus,
phosphorylation, acetylation, and other post-translational
modifications emerge as major regulators of central metabolic
pathways, yet are largely underestimated because of the lack
of reliable approaches for systematic analyses (38). Their
genetic and plastic variability together with their effects on the
phenotype remain to be studied.

The present work focuses on the genetic and plastic vari-
ability of enzyme and isoform abundances in yeast, and on
the possible consequences of this variability on metabolic and
“life-history” traits, i.e. traits characterizing the lifespan of the
organism such as growth or survival. Quantitative proteomics
based on two-dimensional electrophoresis (2-DE)1 is well
adapted for this purpose, because the different isoforms of a
protein often have different electrophoretic mobility, resulting
in distinguishable spots. We applied quantitative proteomics
to Saccharomyces cerevisiae alcoholic fermentation (AF), a
central metabolic pathway exploited for millennia in three
important human food-processes: beer and wine production
(39–41), and bread leavening (42). The yeast AF enzymes are
well-known and most of them have been identified on 2-DE
maps (43–47). In a previous work, we showed that life-history
traits (carrying capacity and cell size) and metabolic phenotypes
(maximum CO2 flux, ethanol, acetate, and glycerol content)
displayed large variation, with medium effects usually higher
than the strain effects (48). On the other hand, trade-offs were
found between metabolic and life-history traits (49). A recent
work showed that the expression variation of a few genes
involved in the upper part of glycolysis could drive changes in
life-history strategies (50), indicating that life-history traits might
be under the control of some metabolic enzymes.

All these observations prompted us to investigate the pos-
sible control of metabolic and life-history traits by a large
panel of AF enzymes tested under various conditions. Our

experimental design included nine food-processing strains
grown in triplicate in three different synthetic media mimicking
the dough/wort/grape must found in bakery, brewery, and
enology, to: (1) quantify thoroughly the abundances of 18 AF
enzymes and their isoforms in a sample of 27 medium x strain
combinations; (2) compare the genetic and plastic variability of
the enzymes and their isoforms; (3) search which enzymes or
isoforms, if any, are related to CO2 flux, AF metabolite concen-
trations, and life-history traits, and thus may exert control over
metabolism and life-history strategy. Our results highlight the
preponderant role of post-translational modifications in the var-
iation of metabolic phenotypes and life-history traits.

EXPERIMENTAL PROCEDURES

A detailed Materials and Methods section is available as Support-
ing Information.

Biological Material and Synthetic Fermentative Media—Nine S.
cerevisiae strains were used (supplemental Table S1), from enology
(E1 to E4), brewery (B1 and B2), and distillery origins (D1 to D3). All
strains were grown in triplicates in three synthetic fermentative media
differing by their amount of sugar, nitrogen, pH, osmotic pressure,
and anaerobic growth factors to reflect main changes of fermentation
medium between brewery (BREM), bakery (BAM), and winery (WIM)
contexts (supplemental Table S2).

Metabolic and Life-history Traits—For each of the 81 fermentations
(nine strains � three media � three repetitions), we measured the
following metabolic and life-history traits: CO2 specific flux (the CO2

production rate per cell, g/h/cell), ethanol production (% vol/cell),
acetic acid concentration (g/cell), glycerol concentration (g/cell), bio-
mass (gcell), carrying capacity (K or maximum population size in
cells/ml), and cell size (�m [diameter]).

Quantitative Proteomics—One sample per fermentation (81 fer-
mentations) was harvested at comparable physiological stage (max-
imal CO2 production rate before nutriment starvation). One 2-DE gel
per sample was run and stained with colloidal-blue, which offers a
linear relationship between spot quantification and protein abun-
dance (47) and thus allows accurate comparison of spot abundance
between and within 2-DE gels. Spots of interest were quantified using
Progenesis software (Nonlinear Dynamics, Newcastle, UK) and iden-
tified using mass spectrometry (MS). Almost all enzymes involved in
glycolysis and ethanol pathways were identified, or at least the major
and most abundant isozymes in case of paralogous genes.

Statistical Analyses—The variation of each isoform or enzyme
abundance (in the latter case the isoforms of the enzyme were
summed) was investigated through a mixed ANOVA model:

Z � � � mediumi � strainj � blockk � positionl � batchm

� medium * strainij � �ijklm

where Z is the variable, medium is the medium effect (i � 1, 2, 3),
strain is the strain effect (j � 1, … , 9), block is the random block effect
(effect of each weekly experimental repetition, k � 1, … , 11), position
is the random position effect (bioreactor position, l � 1, … , 15), batch
is the random 2-DE batch effect (m � 1, … , 6), medium * strain is the
interaction effect between medium and strain factors, and � is the
residual error. For further analyses (hierarchical clustering, PCA, LDA,
regression analysis, etc.), we used the mean abundances predicted
by the ANOVA model, that is, corrected for the random effects (block,
position, and batch effects). The final data set is available as supple-
mentary Data set S4. Hierarchical clustering was made using R
(Ward’s clustering method and Euclidean distances). Proteomic-trait

1 The abbreviations used are: 2-DE, two-dimensional electropho-
resis; BREM, brewery medium; BAM, bakery medium; WIM, winery
medium; LDA, linear discriminant analysis; AF, alcoholic fermentation;
MS, mass spectrometry; MCA, metabolic control analysis.
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relationships were explored using multiple linear regression to find
enzymes and isoforms whose abundance was significantly related to
metabolic and life-history traits. The impact of human domestication
was investigated using linear discriminant analysis (LDA) to discrim-
inate beer, distillery, and wine strains using R. Discriminant isoforms
were identified through stepwise variable selection and through the
calculation of the « ability to separate » (AS) criterion.

RESULTS

To explore the extent of phenotypic diversity of enzymes
abundance in alcoholic fermentation pathway, we chose nine
food-processing strains of S. cerevisiae (supplemental Table
S1) from different food origins, and we performed anaerobic
alcoholic fermentations in triplicate using three different syn-
thetic media (supplemental Table S2) that mimicked the
dough/wort/grape must found in bakery, brewery, and enol-
ogy (48). For each of the 81 fermentations (9 strains � 3
media � 3 repetitions), cell samples for proteomics assays
were harvested during the fermentations when the CO2 pro-
duction rate per cell (the flux) was close to its maximum, so
that the cells displayed comparable physiological stage. Us-
ing quantitative proteomics, we identified and quantified the
relative abundance of 15 enzymes of glycolysis and ethanol
pathways, one enzyme of acetate pathway and two enzymes
of glycerol pathway (Fig. 1). Those 18 enzymes were repre-
sentative of the alcoholic fermentation metabolic process and
will be thereafter called the fermentation proteome. For most
enzymes, several spots, corresponding to different post-
translational forms (isoforms) were identified (Fig. 1), allowing
subsequent analyses both at the enzyme level (sum of all
isoforms for each enzyme) and at the post-translational mod-
ification level (individual isoforms). The few suspected allelic
variants identified by 2-DE (shifting trains of spots, Fig. 1B)
were confirmed by gene sequence (supplementary Informa-
tion Data set S1). In these last cases, we compared isoforms
having the same position within the train of spots (acidic,
basic and intermediary isoforms) rather than co-located spots
(see Materials and Methods in Supplementary Information).
The mean coefficient of variation between biological tripli-
cates for isoforms was 18.4%, which is low enough to accu-
rately detect small abundance variations. Proteomic data
were released in the PROTICdb database, a web-based ap-
plication designed for large-scale proteomic programs to
store and query data related to protein separation by 2-DE
and protein identification by MS (http://moulon.inra.fr/protic/
adaptalevure. See Supplementary Information for details).

The Fermentation Proteome is Constrained—We first ana-
lyzed the different sources of variation for protein abundance
at different levels: At the whole fermentation proteome level
(sum of enzymes of glycolysis, ethanol, acetate, and glycerol
pathways), at the enzymes level (sum of isoforms for each
enzyme), and at the post-translational level using individual
isoforms (Table I). Considered globally, the sum of the abun-
dance of the enzymes involved in the fermentation proteome
(42 isoforms) represents on average 32.87 � 1.89% of the

total analyzed proteome (2265 � 209 spots depending on the
2-DE gel). Variance analysis (ANOVA) revealed that such fer-
mentation pool displayed no medium, no strain, and no me-
dium � strain interaction effects, indicating that the enzymatic
pool allocated to glycolysis, ethanol, acetate, and glycerol
pathways is invariant whatever the medium and strain con-
sidered. Within the fermentation proteome, the abundance
from one enzyme to another (sum of all isoforms for each
enzyme) varied greatly (supplemental Fig. S1), with highly
abundant proteins (Tdh2p, Tdh3p, Eno2p, Fba1p) and poorly
represented enzymes (PfK1p, Ald6p, Pgi1p, Hor2p, Rhr2p).
However, although abundance had important variation within
enzymes, among strains, the proportion allocated to each
enzyme appeared to be globally conserved (Fig. 2). Indeed,
the mean coefficients of variation of the 18 enzymes (CV �

0.26) and 42 isoforms (CV � 0.35) were significantly lower
than the mean coefficient of variation of the 688 other com-
mon spots (non-AF proteins) on the 2-DE gels (CV � 1.24,
Kolmogorov-Smirnov test, p value � 2.48 � 10�10 and 2.89 �

10�15, respectively). However, although the abundance of AF
enzymes appeared more constrained than the whole pro-
teome, significant variations were found, in particular for the
enzymes of the last part of glycolysis (except Tdh3p and
Gpm1p), as well as for the enzymes of ethanol, acetate, and
glycerol pathways (Table I). A significant strain effect was
found for most enzymes (13/18), which accounted for 21% to
68% of total variation (Table I). The medium effect was sig-
nificant for only 6/18 enzymes and accounted for much less of
the total variation (between 4 and 28%, Table I). The me-
dium � strain interaction effect was significant for 2/18 en-
zymes, and accounted for 15% to 16% of total variation of the
enzyme. Finally only 5/18 enzymes exhibited no strain or
medium effect, and the average abundance of Pgi1p, Fba1p,
and Tpi1p, corresponding to the first part of glycolysis, was
similar in all the 27 medium � strain combinations. Therefore,
we found a significant variation for enzyme abundance, which
was better explained by genetic differences between strains
than by plastic changes in response to variations of the cul-
ture medium.

The Isoforms of a Given Enzyme Display Different Patterns
of Variation—The different isoforms of the fermentation en-
zymes were also analyzed individually (Table I). The isoforms
of a given enzyme generally displayed different abundance
patterns that were hidden when the analysis was performed at
the enzyme level (sum of the isoforms). For example, three
spots were identified for Gpm1p. Summing all isoforms,
Gpm1 displayed neither medium nor strain effects, whereas
spot 3313 displayed strain effect (higher relative abundance
for E2 and D1 strains). For most enzymes, isoforms vary in
different ways with respect to genetic and environmental fac-
tors (Table I). In addition, for some enzymes, the abundance
variation of the different isoforms compensate, in part, for
each other. For example, the global variance of Pdc1p abun-
dance was twice lower than the sum of the variances of the
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four individual Pdc1p isoforms (1.08 � 10�3 versus 2.26 �

10�3). This showed that the different Pdc1p isoforms had
negative covariance. Indeed, the abundance of three Pdc1p
isoforms (1605, 1606, and 1589) was significantly lower for
strain D3 whereas the abundance of the remaining Pdc1p

isoform (spot 4854) was significantly higher, compensating in
part for the variation of the others. Isoform compensation was
found for four enzymes (Fba1p, Tdh2p, Eno2p, Pdc1p) that
displayed less variation when considering the variance of the
sum of the isoforms rather than the sum of the variance of the

FIG. 1. Linking glycolysis, ethanol, glycerol, and acetate pathways to 2-DE proteomics. Plain boxes: identified enzymes. Striped boxes:
unidentified enzymes corresponding to minor or low-abundant isozymes. Stars indicate specific spots corresponding to allelic variants (see B).
A, 2-DE: Localization of the different enzymes within the master gel (co-electrophoresis of all samples). MW and pI stand for Molecular Weight
(kDa) and isoelectric point, respectively. B, Allelic variants: five allelic variants were identified for Pfk1p, Pgk1p, Tdh3p, Eno1p, and Eno2p on
the basis of the electrophoretic mobility of the corresponding spots, and were confirmed by protein sequence (supplementary Information
Dataset S1). The detail of enzymes and metabolites abbreviations is Pgi, Phosphoglucoisomerase; Pfk, Phosphofructokinase; Fba, Fructose-
biphosphatase aldolase; Tpi, Triose-phosphate isomerase; Tdh, Triose-phosphate dehydrogenase; Pgk, 3-Phosphoglycerate kinase; Gpm,
Glycerate phosphomutase; Eno, Enolase; Pyk, Pyruvate kinase; Pdc, Pyruvate decarboxylase; Adh, Alcohol dehydrogenase; Gpd, Glycerol-
3-phosphate dehydrogenase; Hor, Hyperosmolarity-responsive (DL-glycerol-3-phosphatase); Rhr, Related to HOR2 (DL-glycerol-3-phospha-
tase); Ald, Aldehyde dehydrogenase; Glucose-6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, Fructose-1,6-biphosphate; DHAP,
dihydroxyacetone phosphate; G3P, Glycerol-3-phosphate; GA3P, glyceraldehyde-3-phosphate; BPG, glycerate-1,3-biphosphate; 3PG, glyc-
erate-3-phosphate; 2PG, glycerate-2-phosphate; PEP, phosphoenol-pyruvate.
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TABLE I
Results of the ANOVAs: sums of squares for abundance of enzymes and their isoforms involved in glycolysis, ethanol, acetate, and glycerol
pathways. For some enzymes/isoforms. data transformation was necessary to obtain normally-distributed residues: log transformation for the
fermentation proteome, Pgi1p-1660, Pfk2p-4832, Fba1p-4759, Tdh1p-2775, Tdh2p-4872, Tdh2p-4740, Tdh3p-all isoforms, Tdh3p-acidic,
Tdh3p-intermediary, Tdh3p-basic, Pgk1p-basic, Gpm1p-all isoforms, Gpm1p-3333, Gpm1p-3345, Gpm1p-3313, Eno1p-all isoforms, Eno2p-
all isoforms, Eno2p-intermediary, Eno2p-acidic, Pyk1p-1587, Pdc1p-1606, Adh1p-all isoforms, Adh1p-4799, Ald6p-1565; inverse transforma-
tion for Fba1p-all isoforms, Fba1p-4758, Eno1p-acidic, Pyk1p-all isoforms, Pyk1p-1630, Pyk1p-1310, Pdc1p-4854, Adh1p-4808; and finally
square root transformation for Tdh1p-2824 and Eno1p-intermediary. Variance was calculated across the 27 strain x medium combinations

Metabolic pathway Enzymes Isoforms
reference

% of total sum of squares (df)a

Variancemedium
(2)

strain
(8)

medium �
strain (16) residual (52)

Fermentation proteome all AF enzymes all isoforms 3.55 10.84 28.86 56.74 6.21E-02
Glycolysis Pgi1p 1660 0.33 19.9 17.9 61.87 1.86E-05

Pfk1p all isoforms 2.2 34.9*** 27.62 35.29 1.37E-05
intermediary 2.57 43.99*** 24.85 28.59 3.85E-06
basic 1.96 31.2** 19.09 47.75 1.81E-07
acidic 5.12 27.45** 28.87 38.57 2.02E-06

Pfk2p 4832 0.82 35.26** 27.79 36.13 1.94E-06
Fba1p all isoforms 2.18 9.57 24 64.25 5.69E-04

4759 2.14 21.07 26.3 50.5 5.23E-05
4758 0 8.3 31.08 60.62 4.87E-04
2414 9.22 17.38 16.95 56.45 9.35E-05

Tpi1p 3406 1.71 11.57 19.81 66.9 9.08E-05
Tdh1p all isoforms 18.73** 21.9** 20.82 38.55 3.31E-03

2775 13.79** 19.81* 27.79 38.61 2.58E-04
2757 14.46* 20.09* 19.27 46.18 9.84E-04
2729 12* 21.56** 28.25 38.19 5.41E-05
2824 10.55 29.07** 10.8 49.58 1.02E-04

Tdh2p all isoforms 1.77 37.89*** 24.82 35.52 1.71E-03
4732 2.56 50.81*** 11.24 35.4 7.68E-05
4872 4.21* 77.63*** 5.2 12.96 9.01E-05
4740 0.49 56.38*** 17.4 25.73 1.73E-03

Tdh3p all isoforms 1.3 14.91 33.52 50.27 1.63E-03
basic 1.51 17.71 22.79 57.99 5.16E-05
intermediary 1.22 12.24 34.52 52.02 1.13E-03
acidic 1.28 79.49*** 5.79 13.44 3.11E-04

Pgk1p all isoforms 8.49* 48.63*** 9.48 33.39 2.68E-03
basic 20.61*** 34.57*** 13.09 31.74 2.70E-05
intermediary 5.58 42.82*** 11.97 39.63 1.61E-03
acidic 7.67* 53.39*** 5.53 33.41 9.13E-05

Gpm1p all isoforms 9.22 6.03 23.08 61.67 2.98E-04
3333 9.71 2.83 23.73 63.72 1.98E-04
3345 5.47 6.35 17.42 70.75 1.39E-05
3313 2.89 24.26** 32.97 39.88 3.74E-05

Eno1p all isoforms 27.55*** 26.87*** 18.24 27.34 2.31E-03
basic 27.34*** 27.65*** 15.64 29.37 6.54E-05
intermediary 21.82*** 26.52** 15.69 35.96 1.30E-03
acidic 16.07** 31.99*** 15.23 36.71 1.02E-04

Eno2p all isoforms 3.39 27.88** 20.81 47.92 1.88E-03
basic 4.18 32.77*** 21.16 41.9 5.08E-04
intermediary 1.52 22.85* 32.17 43.46 1.38E-03
acidic 1.9 15.67 14.51 67.92 6.40E-05

Pyk1p all isoforms 1.7 41.85*** 19.56 36.89 2.99E-03
1587 0.79 21.51 22.41 55.29 8.72E-05
1310 1.1 36.36*** 22.03 40.51 1.46E-03
1630 2.74 42.2*** 14.38 40.68 1.55E-04

Ethanol Pdc1p all isoforms 7.69 20.88* 24.64 46.79 1.08E-03
4854 0.65 55.53*** 11.52 32.3 9.72E-04
1589 2.28 66.54*** 11.99 19.19 1.16E-03
1605 6.71 39.02*** 9.49 44.78 1.15E-04
1606 3.64 29.71* 10.56 56.1 1.65E-05

Adh1p all isoforms 0.94 33.43*** 23.38 42.24 7.22E-04
4799 1.78 49.82*** 17.3 31.1 1.90E-04
4808 0.92 27.33** 28.75 43 2.45E-04

Glycerol Hor2p 3129 6.76** 63.72*** 14.62* 14.9 3.75E-05
Rhr2p 3003 4.08** 68.49*** 15.92** 11.52 1.95E-04

Acetate Ald6p 1565 23.67 18.32 19.39 38.61 8.96E-06
a df: degree of freedom. Significance is indicated as follow: * significant at 5%; ** significant at 1%; *** significant at 0.1% (Benjamini-

Hochberg correction for multiple testing).
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isoforms (Table I). Isoforms compensation was visible on Fig.
2: the total enzyme abundances (illustrated by pie sizes) var-
ied weakly between strains whereas the distribution of the
different isoforms of the enzymes (illustrated by pie’s slices)
was more variable for Tdh2p, Pdc1p, Fba1p, and Eno2p.
Overall, analyses of variance showed that the different iso-
forms of a given enzyme can respond differently to environ-
mental and genetic changes, and in some cases can com-
pensate each other.

Global Patterns of Isoform Abundance Variation Reflect the
Strain Genetic Diversity—To represent global patterns of pro-
tein abundance variation, we performed a hierarchical clus-
tering of all 27 medium � strain combinations on the basis of
individual mean isoform abundance over replicates (Fig. 3A).
The resulting dendrogram showed a clustering according to
the strains rather than the culture media and was close to the
one obtained from genetic data (Fig. 3B). The hierarchical
clustering was thus congruent with the analyses of variance of
the isoforms and suggested that the variations in isoform
abundance of the fermentation proteome are mainly geneti-
cally determined and displays limited plastic variation.

Because yeast strains used in different food processes may
have experienced independent human domestication (51–53),
we searched for enzymes and/or isoforms that could be in-
volved in differentiating the strains according to their food
origin (beer, distillery, and wine). We ran a LDA on the basis of
isoform relative abundance with the food origin of the strains
as grouping factor (Fig. 4A). The a posteriori probability to
infer correctly the food origin of a strain was 0.96, indicating

that it was possible to find a linear combination of isoforms
that almost perfectly separated the samples according to the
food origin of the strains, whatever the culture medium. A
stepwise variable selection was then performed to determine
which isoforms allowed such food origin discrimination and
the ability to separate (AS) criterion was calculated (Fig. 4B).
The isoform with the highest AS was Pdc1p-4854 that ac-
counted for 32.56% of food origin discrimination, indicating
that human domestication differentially targeted this isoform,
directly or indirectly. Indeed, Pdc1p-4854 was significantly
more abundant in distillery strains than in beer and wine
strains (Fig. 4C). The acidic isoform of Tdh3p also accounted
for 15.39% of food origin discrimination and separated wine
strains from both distillery and beer strains. The unique iso-
form of Ald6–1565, one isoform of Tdh1p (2729), and one
isoform of Pgk1p (intermediary) were associated with 7.51%,
7.13%, and 6.54% of food-origin discrimination, respectively.
The other isoforms had lower ability to separate food origins
(�5%). Notice that only few isoforms of the same enzyme
appeared among the most discriminant factors in the LDA:
one isoform out of the four of Pdc1p, one isoform out the
three of Tdh3p, Tdh1p, and Pgk1p. This result indicates that
the fermentation proteome was significantly shaped by hu-
man domestication, through the differential targeting of some
isoforms of a few enzymes involved in fermentation.

The CO2 Specific Flux is Related to Variation in Abundance
of Specific Isoforms of Different Enzymes—The net outcome
of glycolysis and alcoholic fermentation is the production of
ethanol and ATP from glucose, along with CO2 release. Step-

FIG. 2. Distribution of the fermentation proteome within nine food-processing strains. B1 and B2, brewery strains; D1 to D3, distillery
strains; E1 to E4, enology strains. The 18 enzymes involved in glycolysis, ethanol, glycerol and acetate pathways are illustrated by pies whose
size is proportional to the mean enzyme abundance over the three media. Within each pie the different isoforms (if any) are represented by pie’s
slice of different colors.
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wise multiple regression analyses were performed to deter-
mine which enzymes or isoforms of the fermentation pro-
teome (if any) were related to CO2 specific flux (i.e., the CO2

production rate per cell). For enzyme-flux regression analysis,
the best model (i.e., lowering AIK criterion) accounted for
44.49% of the variation of the CO2 specific flux. For the
isoform-flux regression analysis, the best model accounted
for 79.50% of the variation of the CO2 specific flux (Table II),
suggesting that the efficiency of the fermentation process is
more related to the abundance of specific forms of different
enzymes than to global enzyme abundances. Therefore we
considered individual isoforms for further functional analysis.
Eighteen isoforms were found to be significantly associated
with the variation of the CO2 specific flux (Fig. 5A). Among
them, the Pdc1p-1589 isoform accounted for 12.47% of the
CO2 flux variation, which was the largest part of variation
explained by a single isoform. However, its abundance was
negatively correlated to the flux, which suggests that it may
correspond to an inactive or poorly active form of Pdc1p. In
addition, two isoforms of Tdh1p (spots 2757 and 2729) ac-

counted for 10.07% and 8.50% of the flux variation, respec-
tively, and both were positively correlated to the flux. An
isoform of the alcohol dehydrogenase, Adh1p (spot 4799) was
also found negatively correlated to the flux and accounted for
7.57% of its variation. Finally, an enzyme involved in the glyc-
erol pathway, Hor2p (spot 3129), was found negatively related
to the CO2 flux and accounted for 5.02% of the flux variation,
whereas the isoforms of the other enzymes accounted for less
than 5% of the flux variation. Thus, CO2 flux variation was
associated with the variation in abundance of specific isoforms
rather than by the variation in abundance of all isoforms belong-
ing to a peculiar enzyme. Moreover, each isoform accounted for
a limited proportion of the flux variation, suggesting that the
control of CO2 flux is distributed among the different isoforms.

The CO2 Specific Flux is Related to Phosphorylation and
N-Terminal Acetylation of Some Enzymes—Additional exper-
iments were run with a high-resolution mass spectrometer
(QExactive, Thermo Scientific) to identify the underlying post-
translational modification(s) differentiating the isoforms of the
three enzymes (Pdc1p, Tdh1p, and Adh1p) that accounted for

FIG. 3. Hierarchical clustering using proteomic and genetic data. A, Proteomic relationships between nine food-processing strains in
three fermentative media using the fermentation proteome data. B, Genetic relationships between nine food-processing strains using eight
microsatellites. The robustness of the nodes was assessed through multiscale bootstrap resampling.
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the highest parts of variation of CO2 specific flux. The mass
spectrometry (MS) data were used to search specifically for
phosphorylation and N-terminal acetylation, which are very
common post-translational modifications in yeast and were
previously described for Pdc1p, Tdh1p, and Adh1p (http://
www.ibgc.u-bordeaux2.fr/YPM/, http://www.phosphogrid.
org).

For the four isoforms of Pdc1p, we were unable to identify
the causal post-translational modifications, due either to the
absence of phosphorylation or N-terminal acetylation for this
enzyme or to accessibility problems of the modified peptides.
For Tdh1p-2824, we identified a phosphorylated serine (po-
sition 201) that discriminated Tdh1p-2824 and Tdhp-2757

(which may correspond to the native protein). Protein phos-
phorylation induces an acidic shift, which is congruent with
isoform position on gel (Fig. 1). The post-translational modi-
fications associated with the two other isoforms of Tdh1p
(2729 and 2775) were not identified, but multiple combina-
tions of post-translational modifications are possible, render-
ing hazardous their identification by mass spectrometry.

For Adh1p, we identified an N-terminal acetylation (after
methionine excision) harbored by Adh1p-4808, whereas
Adh1p-4799, the other isoform, probably corresponded to the
native protein. N-terminal acetylation also induces an acidic
shift, in accordance with Adh1p isoform location on 2-DE
gels. Hence, from a functional viewpoint, our mass spectrom-
etry analyses indicated that CO2 flux variation was mainly
negatively associated with the variation in abundance of an
unknown post-translational modified form of Pdc1p, the
phosphorylation status of Tdh1p and the N-terminal acetyla-
tion status of Adh1p.

Final Metabolite Concentrations are Related To Some Spe-
cific Isoforms of Different Enzymes—During alcoholic fermen-
tation, most of the consumed glucose (89.08%) is used to
produce ethanol. The remaining glucose is used for biomass
production (5.96%), glycerol (3.86%) and acetate (0.61%)
synthesis (48). Other minor by-products, such as carbohy-
drate storage, represent less than 5‰ of initial glucose
content. However, the AF product concentration at the end

FIG. 4. Discrimination of the food origin of the strains on the basis of the fermentation proteome. A, Linear discriminant analysis of the
food origins of the strains (beer, distillery, and wine strains) on the basis of the isoform relative abundances. B, Values of the “Ability to
Separate” (AS) criterion for the most significant isoforms. The other isoforms have an AS below 4%. C, Isoform mean relative abundance for
each food origin. Means with different letters differ significantly (Duncan’s multiple comparison, p � 0.05).

TABLE II
Percentage of variation accounted for by the multiple regression
model for whole enzymes and for individual isoforms for seven met-

abolic or life-history traits

Metabolic of
life-history traits

Whole
enzymes

Individual
isoforms

Flux 44.49% 79.50%
Ethanol per cell 46.14% 60.23%
Glycerol per cell 49.96% 69.05%
Acetate per cell 46.53% 68.00%
Biomass per cell 34.22% 56.58%
K (carrying capacity) 67.28% 87.60%
Cell size 60.92% 88.39%
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of the fermentation process varies greatly depending on the
medium and the strain for a given fermentation volume (48).
To determine whether some enzymes or isoforms could be
related to the final concentration of AF products and pro-
duction of biomass, stepwise multiple regression and boot-
strap resampling were applied for ethanol, acetate, glycerol,
and biomass production per cell. With no exception, indi-
vidual isoforms accounted for a larger part of variation of
each of the four AF products than did the whole enzymes
(Table II).

Nine isoforms were found significantly related to ethanol
production per cell (Fig. 5B), the first one being Pdc1p-4854
that accounted for 22.52% of its variation with a positive
correlation between the abundance of the isoform and etha-
nol production. Two other isoforms, Rhr2p-3003 and Tdh2p-
4740, accounted for a substantial part of the variation
(12.29% and 9.55%, positive and negative correlation respec-
tively). For acetate production (Fig. 5B), the fittest model
included seven isoforms, two of them accounting for most of
the variation: Pdc1p-4854 (24.08%, positive correlation) and

Adh1p-4799 (19.66%, negative correlation). Variation in glyc-
erol production was also mostly associated with the variation in
abundance of these two isoforms (30.93% variation, positive
correlation for Pdc1p-4854 and 15.54% variation, negative cor-
relation for Adh1p-4799), whereas it was not associated with the
variation of Hor2p and Rhr2p isozymes, that are directly in-
volved in the glycerol pathway (Fig. 5B). Finally, regarding bio-
mass production per cell, the fittest regression model contained
eight isoforms of which the first ones, Adh1p-4799, Pgk1p-
acidic, and Ald6p-1565, were negatively correlated to biomass
and accounted for 19.31%, 11.59%, and 6.67% of variation
respectively. Thus, the fate of glucose during AF seems to be
mostly related to some specific isoforms of a few enzymes:
increased level of Pdc1p-4854 was associated with an increase
of ethanol, glycerol, and acetate production, whereas increased
level of the nonacetylated form of Adh1p (Adh1p-4799) was
associated with a decrease of biomass formation and to a lesser
extent of acetate and glycerol concentrations. For Pdc1p, the
isoform associated with ethanol, glycerol, and acetate produc-
tion (Pdc1p-4854) differs from the one associated with CO2

FIG. 5. Relationship between seven metabolic and life-history traits and individual isoforms of the enzymes involved in alcoholic
fermentation. The best model accounting for trait variation was established using stepwise multiple regression (see equations in supplemental
Information - text file). All the isoforms included in the model are presented. A, Percentage of variance of the CO2 specific flux per cell
accounted for by each isoform. B, Percentage of variance accounted for by each isoform for the concentration of ethanol, glycerol, and acetate
per cell, and for biomass per cell. C, Percentage of variance accounted for by each isoform for two life-history traits: K (carrying capacity) and
cell size.
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specific flux variation (Pdc1p-1589) but belong to the same
enzymes.

“Ant” and “Grasshopper” Strategies are Mainly Determined
by the Degree of Acetylation of Adh1p—In previous works,
two life-history traits, cell size and maximum population size
(K, the carrying capacity) were found to be related to the
glycolytic flux and to define a range of life-history strategies
distributed between two extreme behaviors, metaphorically
designated as ants and grasshoppers (49, 50, 54). Similarly to
what was done for metabolic traits, stepwise multiple regres-
sion and bootstrap resampling on isoform abundances were
applied to cell size and K, the carrying capacity (Fig. 5C). The
two isoforms of alcohol dehydrogenase, Adh1p, accounted
for a large part of variation of these two life-history traits.
Variation in abundance of the non-N-terminal acetylated iso-
form (Adh1p-4799) was found to be positively associated with
K and negatively associated to cell size (23.59% and 21.16%
of variation respectively), whereas it was the opposite for the
acetylated isoform of Adh1p (spot 4808) (9.38% and 4.55%
for K and cell size, negative and positive correlation respec-
tively) . Some isoforms of Pgk1p and Pdc1p were also signif-
icantly related to K and cell size: Pgk1p-acidic, Pgk1pbasic,
and Pdc1p-4854 accounted for 17.29%, 12.46%, and
10.92% of K variation, whereas Pgk1p-acidic and Pdc1p-
1589 accounted for 10.33% and 9.58% of cell size variation.
Interestingly, this analysis allowed us to explore the metabolic
bases for the correlation between K and cell size. From the
isoforms that were retained by the multiple regression, eight
(Tdh1p-2729, Tdh1p-2824, Tdh2p-4732, Pgk1p-basic,
Pgk1p-acidic, Adh1p-4799, Adh1p-4808, and Ald6p-1565)
were positively correlated with one trait, and negatively cor-
related with the other, which is consistent with the negative

correlation previously observed between the two life-history
traits. The other isoforms were specific for either K or cell size.
In addition, we found a spectacular specialization of the iso-
forms of Adh1p, with isoform-4799 correlated with high K and
low cell size whereas isoform-4808 was correlated to low K
and high cell size (Fig. 5C). Although these two isoforms
accounted for around 26–33% of the variation for cell size
and K by linear regression, it raised up to 52–65% when
considering the degree of acetylation of Adh1p (Adh1p-4808/
sum of both Adh1p isoform). As shown Fig. 6, the percentage
of acetylated Adh1p is highly positively correlated to K (� �

0.77, p � 10�15) and highly negatively correlated to cell size
(� � –0.75, p � 10�15). This shows that ant and grasshopper
strategies are mainly associated with the degree of N-terminal
acetylation of the alcohol dehydrogenase.

Using Natural Variation for Metabolic Engineering—Al-
though multiple regression analyses gave a good indication of
the correlation existing between metabolic or life-history traits
and isoform abundances, they cannot predict whether the
change of abundance of a single isoform will have a large
impact on the traits. Indeed, an isoform may be significantly
correlated to a trait but the slope may be low (a variation in
abundance has little effect on the flux) and/or the range of
variation in abundance of the isoform may be restricted. To
determine the extent to which the different isoforms could
affect maximum CO2 flux during alcoholic fermentation, we
used the equation of the multiple regression model previously
established. For each strain, we used the mean abundance of
their isoforms observed in all three media (supplementary
Information Data set S2), except for one isoform the concen-
tration of which varied over its natural range of variation in the
nine strains. This allowed us to predict how the CO2 specific

FIG. 6. Relationships between Adh1p isoform ratio and two life-history traits, cell size, and carrying capacity. A, 2-DE gel portions of
the two isoforms of Adh1p ordered in decreasing Adh1p isoform ratio (spot 4799/spot 4808). B1 and B2, brewery strains; D3, distillery strains;
E1 to E4, enology strains. BAM, BREM, and WIM: bakery, brewery, and winery media. B, Relationship between cell size (diameter, �m) and
Adh1p isoforms ratio (spot 4799/spot 4808). A significant negative correlation was found (� � �0.74, p � 10�15). C, Relationship between K
(cells per ml) and Adh1p isoform ratio (spot 4799/spot 4808). A significant positive correlation was found (� � 0.77, p � 10�15). The points
corresponding to the 2-DE gel portions (A) are black-circled.
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flux changes when the abundance of one isoform changes
(bar lengths and positions, Fig. 7). For instance, the natural
range of variation of Ald6p-1565 was associated with a very
low CO2 flux variation, whereas the response of the flux upon
Pdc1p-1589 variation was large. The magnitude of these pre-
dicted variations was not strain-dependent (the same equa-
tion of multiple regression was used), but there were clear
differences between strains regarding the max-min flux pro-
files over the isoforms (bar positions on the y axis in Fig. 7). In
D3 strain, which had the highest observed flux (3.04 � 10�11

g/h/cell), but the lowest abundance of Pdc1p-1589 (remem-
ber that the correlation between the flux and Pdc1p-1589 is
negative), changing Pdc1p-1589 abundance was associated
with a flux decrease. But for the eight remaining strains,
Pdc1p-1589 variation was mostly associated with a strong
increase of the flux, even exceeding D3’s (best) flux. For
example, strain B1 had a mean flux of 2.17 � 10�11 g/h/cell.
The abundance decrease of Pdc1p-1589 isoform could be
associated to a virtual flux increase of 54% (3.35 � 10�11

g/h/cell) compared with the measured B1’s flux. For B2 the
virtual flux was even more increased: B2 strain had a mean
flux of 2.88 � 10�11 g/h/cell that could be increased up to
4.27 � 10�11 g/h/cell along with the virtual abundance de-
crease of Pdc1p-1589. This result elects Pdc1p-1589 as a
relevant molecular target for further flux improvement for most

strains. In a lesser extent Tdh2p-4740 could also be targeted
to increase flux in all strains but B1 and D2, and Rhr2p-3003
in D3 and E2.

DISCUSSION

Global Constraints on the Fermentation Proteome—We re-
ported here a comprehensive study of the sources of variation
for the yeast fermentation proteome during alcoholic fermen-
tation, and its relationship with metabolic and life-history trait
variation. We compared strains from different food origins
grown in different fermentation media, and chose the peak
CO2 production rate as the reference physiological stage. At
this stage the enzymatic pool allocated to the fermentation
proteome, which represents one third of the total proteome,
appeared to be constant over the media and strains consid-
ered. Previous work has suggested that enzyme concentra-
tions cannot increase indefinitely and are probably bounded
because of cellular constraints in space and energy (55),
avoiding macromolecular crowding (56) and lowering the en-
ergetic cost associated with enzyme transcription, translation,
and maintenance under limited resources (57, 58). Although
our data demonstrated the existence of such a constraint at
the level of the whole fermentation proteome, we have also
shown that the AF enzymes have reduced variance compared
with non-AF proteins, highlighting the existence of evolution-

FIG. 7. Predicted response of CO2 flux to individual isoform variation. To predict the response of CO2 flux to individual isoform variation,
we used the equation of the multiple regression accounting for CO2 flux from isoform abundance. For each strain, the abundance of all isoforms
but one was fixed equal to their mean over the three media, and the last isoform varied over the range of natural variation among the nine
strains. D1 to D3, distillery strains; E1 to E4, enology strains. BAM, BREM, and WIM: bakery, brewery, and winery media. The CO2 specific flux
is expressed in 10�11 g h�1 cell�1. The “best flux” is indicated by the gray horizontal lines and the “strain flux” by the dotted line.
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ary constraints. Such constraints may be related to the exis-
tence of macromolecular complexes associating enzymes be-
longing to the same metabolic pathway. These so-called
metabolons (59) were described for glycolytic enzymes in
several organisms ranging from plants (60, 61), to human (62,
63) and yeast (64). Metabolon allows passing (channeling) the
intermediary metabolites from one enzyme to the consecutive
one within a given metabolic pathway, forming a metabolite
tunnel. Substrate channeling is assumed to increase the effi-
ciency and velocity of metabolic pathways, relative to the
performances of a set of independent enzymes, but also to
prevent the release of unstable intermediates (65). In addition,
protein associations may protect the metabolic pathways in
stressful environments (66). Indeed, we can hypothesize that
the abundance of metabolon enzymes is closely regulated,
which is consistent with the strong evolutionary constraint
observed here for AF enzymes.

Variation and Trade-offs Between Isoform Abundances—
For most of the AF enzymes studied here, several spots were
identified in the 2-DE gels. Those isoforms could be unam-
biguously attributed to post-translational modifications: (1) all
the isoforms were detected in all nine strains. Within a given
strain, different isoforms corresponding to a given enzyme
encoded by a given gene necessarily arose through post-
translational modifications; (2) in case of proteins encoded by
paralogous genes (Tdh1/Tdh2/Tdh3, Eno1/Eno2, etc.) mass
spectrometry specific peptides allowing the clear discrimina-
tion of the paralogs were identified (supplementary Informa-
tion Data set S3); (3) in the only five cases where we observed
a shift of electrophoretic mobility of one enzyme for a partic-
ular strain (Fig. 1B), all the spots corresponding to the enzyme
shifted, indicating a change in an amino acid, confirmed from
gene sequences; (4) we were able to identify the post-trans-
lational modifications for some isoforms. Adh1p-4808 was
identified as the acetylated form of Adh1p, whereas Adh1p
corresponded to the native protein. Tdh1p-2824 displayed a
phosphorylated residue (serine 201), whereas Tdh1p-2757
corresponded to the nonphosphorylated isoform. The post-
translational modifications differentiating the other isoforms
could not be identified.

Our data allowed us to measure the magnitude of the
abundance variation of the isoforms of each enzyme, and to
compare them to the variation observed at the whole enzyme
level represented by the sum of isoform abundances. Many
enzymes had isoforms that displayed different ranges of ge-
netic and environmental variation, indicating isoform special-
ization. For some enzymes, most of the variation for protein
abundances was observed at the isoform level, and the abun-
dances of the different isoforms of a given enzyme were
negatively correlated between strains, resulting in a lower
genetic variation at the enzyme level. Moreover, variation of
isoform abundances seemed to have clear functional conse-
quences. Some specific isoforms—rather than all the iso-
forms of some enzymes—were associated to the variation of

CO2 flux, AF products, cell size, or carrying capacity (K). A few
isoforms were also associated to differences between the
food origins of the strains. The relationships between isoforms
and phenotypic traits can be interpreted in three ways: (1) the
isoforms of the enzymes control the phenotype, (2) the phe-
notype regulates back isoforms abundance, (3) trade-offs
related to different allocations of the same resources lead to
correlations between isoforms and traits. As post-transla-
tional modifications of enzymes are largely involved in the
modulation of catalytic activity, ranging from inactivation to
full activation, in protein-protein interactions or the regulation
of enzymatic turnover (12), we interpret our results as the
consequence of isoform control on phenotypic traits. To our
knowledge, this is the first time that post-translational modi-
fications are shown to be associated with traits related to
fermentation metabolism, suggesting that “fine-tuning” of
yeast AF is sustained at the post-translational level.

Sharing-out the Control of Flux—In metabolic control anal-
ysis (MCA), the flux control coefficient is a dimensionless
measure of how much a flux varies in response to an infini-
tesimal change in the rate of a particular reaction (67, 68).
Provided the flux-enzyme (or isoform) relationship is concave
hyperbolic, flux control coefficients can also be estimated
from changes in enzyme activities (69). By extension, the
proportion of variance of CO2 flux accounted for by the abun-
dance variation of an individual isoform can be regarded as a
proxy of the flux control exerted by the isoform. Although the
relationship between flux control coefficient and the propor-
tion of accounted for variance is complex (70), an enzyme that
accounts for a significant part of the flux variance has neces-
sarily a nonnull control coefficient. In our work, 18 isoforms
were found to be related to the CO2 flux, each isoform ac-
counting for a limited proportion of flux variation (maximum
12.34%), in agreement with MCA that predicts flux control to
be split over several enzymes rather than one. The CO2 flux
control was mainly distributed among an unknown post-
translational modification of Pdc1p, the phosphorylation sta-
tus of Tdh1p and the degree of N-terminal acetylation of
Adh1p. Some isoforms of Pfk1p and Pfk2p exhibited strong
genetic variation but no association with the CO2 flux, which
suggests that those enzymes have no control of the CO2 flux.
Conversely, our experimental set-up did not allow us to say
anything about the control of the flux for isoforms that showed
no genetic or environmental variations like Pgi1p and Tpi1p.
Our results can be compared with previous works that spe-
cifically under- or overexpressed some enzymes of the fer-
mentation proteome. From a MCA perspective, allosteric en-
zymes Pfkp and Pyk1p are unlikely to exert a high control on
the glycolytic flux (71). This was confirmed experimentally for
Pfkp (72–74) which is consistent with our own findings. How-
ever, Pyk1p was found to exert a significant level of control
over both the rate and direction of carbon flux in yeast during
growth on glucose (73), as well as in Lactococcus lactis (75).
Accordingly, the Pyk1p-1310 isoform was found significantly
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associated with CO2 flux in our study. Our results also show
some discrepancies with what had been previously observed.
For instance Schaaff et al. (74) reported that the yeast glyco-
lytic flux remained unaffected by the overexpression of
hexokinase, Pfk1p, Pgk1p, Pyk1p, Pdc1p, Gpm1p, or Adh1p,
whereas we found a strong association between the CO2 flux
and some isoforms of Pgk1p, Pyk1p, Pcd1p, and Adh1p.
Similarly, over and underexpression of Pgi1p and Fba1p were
shown to be associated with changes in glucose consumption
rate, cell size, and the carrying capacity K (50), whereas we
found no genetic and no environmental variation for isoform
abundance of those enzymes. However, those results may
not be contradictory, keeping in mind that the variations that
we observed between strains are the result of evolutionary
processes that occurred during yeast domestication, whereas
Schaaf et al. (74) and Wang et al. (50) had analyzed expression
mutants. Indeed, in the MCA perspective, the enzyme selec-
tion coefficients for changing the flux are proportional to the
flux control coefficients (76). Enzymes having a strong control
on the flux are expected to be the primary targets of selection
and show less genetic variation within populations. In Dro-
sophila, a survey of within and between species polymor-
phism of 17 enzymes pointed the glucose-6P branchpoint as
a specific target of selection (77). It is often assumed that the
first steps in a metabolic pathway are exerting strong control
over flux (78). This prediction was verified for the pathway of
anthocyanin biosynthesis by comparing the rate of evolution
of enzyme genes along the pathway in three plant species:
Rausher et al. (79) showed that upstream enzymes of the
pathway were much less variable than downstream enzymes.
In yeast, previous works suggested that specific selective
pressures shaped the first part of the glycolysis: Pgi1p,
Fba1p, and Tpi1p have been conserved as single copy even
after independent whole-genome duplication, meaning that
one duplicated copy has been lost (80–82). Our results show
less genetic variation between strains for the abundance of
enzymes of the upper part of the glycolytic pathway, and
more variation for the abundance of downstream enzymes,
together with strong associations with CO2 flux as well with
metabolic or life-history traits. We propose to interpret these
features as evidence for unequal sharing-out of the flux con-
trol, with a higher control exerted by the upstream enzymes
leading to higher evolutionary constraints. Because of those
constraints, human selection for modulating the CO2 flux or
other traits related to food processing has been only possible
through small changes in the abundance of less constrained
enzymes, downstream in glycolysis or belonging to the glyc-
erol, acetate, or ethanol pathways, resulting in a higher ge-
netic diversity observed today for those enzymes.

Human Domestication Shaped the Fermentation Pro-
teome—Using linear discriminant analysis and subsequent
studies, we showed that the fermentation proteome was sig-
nificantly shaped by human domestication, through the dif-
ferential targeting of a few isoforms. The distillery strains were

separated from beer and wine strains on the basis of Pdc1p-
4854, an isoform associated to the main AF metabolites (eth-
anol, acetate, glycerol concentration per cell). Wine and beer
strains have been specifically selected to lower acetate pro-
duction that is responsible for a well-known off-flavor, the
vinegar taste (83), whereas this feature is less important for
distilling yeasts. This could explain why winemakers and
brewers’ selection significantly lowered this isoform. In addi-
tion, winemaking selection appeared to have specially tar-
geted the acidic isoform of Tdh3p. In a recent work, Jimenez-
Marti and coworkers suggested that Tdh3p might account for
strain adaptation to enological conditions (84). This could
explain why isoforms of this enzyme had been specially tar-
geted for wine strains. Industrial yeast improvement strategies
could build on this result of empirical human domestication
and target the regulation of the post-translational forms of the
others enzymes involved in metabolic control such as Pdc1p
or Adh1p.

Pdc1p and Adh1p: The Last, but not the Least, Steps of
Alcoholic Fermentation—Deciphering the relationships be-
tween the fermentation proteome and metabolism revealed
the implication of several isoforms belonging to different en-
zymes. In particular, isoforms of two proteins, Pdc1p and
Adh1p, were associated to alcoholic fermentation: Pdc1p-
1589 isoform was found to be related to the CO2 flux, whereas
Pdc1p-4854 accounted for an important part (20–32%) of the
final ethanol, glycerol, and acetate concentrations. Impor-
tantly, this last isoform’s abundance was low, and considering
the four identified Pdc1p’s spots as a whole would have
hidden Pdc1p-4854 variation and forbidden the identification
of Pdc1p as an essential enzyme controlling AF metabolites
production in addition to its role in CO2 flux control. Previous
work described the presence of N-terminally acetylated and
nonacetylated isoforms of Pdc1p in yeast (85), and close
comparison of our 2-DE gels with the yeast proteome map
(http://www.ibgc.u-bordeaux2.fr/YPM/) suggests that Pdc1p-
4854 may correspond to the nonacetylated isoform whereas
Pdc1p-1589 and Pdc1p-1605 may be acetylated forms. Pdc1p
N-terminal acetylation is achieved through the excision of the
initial methionine and subsequent addition of an acetyl group.
Our mass spectrometry analyses allowed us to identify the
native (nonacetylated) peptide for Pdc1p-4854 (MSEITLGK),
whereas this peptide was not identified for other Pdc1p iso-
forms. We hypothesized that our mass spectrometry analyses
failed to detect the acetylated peptide (*SEITLGK) because of
its short length (peptides with length inferior to eight amino
acids usually have low yet not-significant p values (�0.05) and
are thus missed by the analysis).

Besides Pdc1p, Adh1p’s isoforms were found to be signif-
icantly related to different metabolic and life-history traits: the
nonacetylated isoform of Adh1p (4799) was associated with a
significant part of the variation of glycerol, acetate, and bio-
mass formation per cell (15–20%), and was also related to two
fitness traits (21–24%), the carrying capacity (K) and cell size,
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that define ant and grasshopper life-history strategies. In par-
ticular, the degree of acetylation of Adh1p was strongly re-
lated to these traits, highlighting the functional importance of
N-terminal acetylation. In yeast, the N-terminal acetyltrans-
ferase responsible for Adh1p acetylation is NatA (85). NatA is
composed of two main subunits (Nat1p and Ard1p), whose
mutants are related to the disappearance of acetylated iso-
forms of several enzymes, including Adh1p and Pdc1p (85).
N-terminal acetylation is one of the most common protein
modifications in eukaryotes, as 85% of the proteins have an
acetylated isoform (86), but it displays several specificities.
Unlike other post-translational modifications, N-terminal
acetylation is irreversible and occurs during protein synthesis
after about 50 amino acid residues have emerged from the
ribosome (87). Thus, N-terminal acetylation is sometimes de-
signed as a cotranslational rather than post-translational
modification. The biological significance of N-terminal acety-
lation is still unclear, because no global trend regarding the
functional consequences of N-terminal acetylation emerges.
For some proteins, N-terminal acetylation may act as a deg-
radation signal (88), whereas for others N-terminal acetylation
may protect from proteolytic degradation and subsequently
increases their half-life (89). N-terminal acetylation was also
shown to be involved in protein sorting and addressing to
cellular organelles (90) or to membrane (91). Indeed, although
Adh1p is frequently described as a cytoplasmic protein, it is
also associated with the plasma membrane (92) like many
other fermentation enzymes (Pgi1p, Tpi1p, Eno1p, Eno2p,
Tdh1p, Tdh2p, Tdh3p, Pgk1p, Pyk1p). In addition, these en-
zymes display protein-protein interactions in yeast (93) and
also in Human (94), suggesting they may form a large metabo-
lon complex whose plasma membrane localization (92) may
be useful for the rapid processing of the glucose entering the
cell. This is particularly true for larger cells in which indepen-
dent cytosolic proteins have less chance to be close together
and form an enzyme-to-enzyme channeling of glycolytic in-
termediates. Moreover, in human erythrocytes, glycolytic en-
zymes are organized into complexes on the membrane (63)
via N-terminal residues of some proteins (95) and phosphor-
ylation (63), highlighting the importance of post-translational
modifications in metabolon efficiency. We speculate that a
few fermentation enzymes could act as a “plasma membrane
anchor” of fermentation metabolon, such as acetylated
Adh1p. This would be in agreement with the fact that larger
cells show a higher degree of N-terminal acetylation of Adh1p.
It could also explain why the nonacetylated isoform of Adh1p
is negatively correlated to the flux, in contrast to the acety-
lated one.

In any case, although the real impact of N-terminal acety-
lation is unknown for Adh1p, we showed a clear correlation
between the degree of acetylation of Adh1p and both cell size
and carrying capacity, as well as between the nonacetylated
isoform and CO2 flux/glycerol/acetate/biomass production.
Recently, some works have shown that lysine acetylation was

involved in the control of central metabolic pathways in both
prokaryotes and eukaryotes (15, 37), but to our knowledge,
this is the first time that N-terminal acetylation of an enzyme is
shown to be unambiguously associated with both metabolic
and life-history traits.

In conclusion, using Saccharomyces cerevisiae alcoholic
fermentation as a model, we have highlighted the importance
of post-translational modifications such as phosphorylation
and N-terminal acetylation in metabolic control. Isoforms
were also shown to govern other key fitness traits related to
cell growth, showing their importance from the functional and
evolutionary viewpoints and underlining the usefulness of
large-scale approaches at the post-translational level.

Acknowledgments—We thank Michel Rigoulet, Anne Devin, Michel
Zivy, and Olivier Martin for their comments that helped improving the
manuscript.

* This work was supported by the ANR program “blanc” Adaptale-
vure NT05-4_45721 and the ANR program “ALIA” HeterosYeast
ANR-08-ALIA-9.

□S This article contains supplemental Information, Data sets S1 to
S4, Tables S1 and S2 and Fig. S1.

�� To whom correspondence should be addressed: CNRS, 210
Chemin de Leysotte, Villenave d’omon 33882, France. Tel.: �33 5 57
57 58 64; Fax: �33 5 57 57 58 13; E-mail: albertin@moulon.inra.fr.

Author contributions: P.M., M.B., M.A., C.D., D.V. and D.S. de-
signed research; W.A., P.M. M.B. and A.B. performed research; T.B.,
D.C. and B.V conducted mass spectrometry analyses, O.L. and T.B.
released proteomic data through PROTICdb, W.A., P.M., M.B., M.A.,
T.S., C.D., D.V. and D.S. analyzed data and wrote the paper.

Conflict of Interest: The authors declare that they have no conflict
of interest.

REFERENCES

1. Skovran, E., Crowther, G. J., Guo, X., Yang, S., and Lidstrom, M. E. (2010)
A systems biology approach uncovers cellular strategies used by Meth-
ylobacterium extorquens AM1 during the switch from multi- to single-
carbon growth. PLoS One 5, e14091
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